Investigation of P2X7R involvement in maternal poly(i:C) exposure evoked autistic features in mice
نویسندگان
چکیده
MicroRNAs (miRNAs) are short, 22–25 nucleotide long transcripts that may suppress entire signaling pathways by interacting with the 3’-untranslated region (3’-UTR) of coding mRNA targets, interrupting translation and inducing degradation of these targets. The long 3’-UTRs of brain transcripts compared to other tissues predict important roles for brain miRNAs. Supporting this notion, we found that brain miRNAs co-evolved with their target transcripts, that non-coding pseudogenes with miRNA recognition elements compete with brain coding mRNAs on their miRNA interactions, and that Single Nucleotide Polymorphisms (SNPs) on such pseudogenes are enriched in mental diseases including autism and schizophrenia, but not Alzheimer’s disease (AD). Focusing on evolutionarily conserved and primate-specifi c miRNA controllers of cholinergic signaling (‘CholinomiRs’), we fi nd modifi ed CholinomiR levels in the brain and/or nucleated blood cells of patients with AD and Parkinson’s disease, with treatment-related diff erences in their levels and prominent impact on the cognitive and anti-infl ammatory consequences of cholinergic signals. Examples include the acetylcholinesterase (AChE)-targeted evolutionarily conserved miR-132, whose levels decline drastically in the AD brain. Furthermore, we found that interruption of AChE mRNA’s interaction with the primatespecifi c CholinomiR-608 in carriers of a SNP in the AChE’s miR-608 binding site induces domino-like eff ects that reduce the levels of many other miR-608 targets. Young, healthy carriers of this SNP express 40% higher brain AChE activity than others, potentially aff ecting the responsiveness to AD’s anti-AChE therapeutics, and show elevated trait anxiety, infl ammation and hypertension. Non-coding regions aff ecting miRNA-target interactions in neurodegenerative brains thus merit special attention.
منابع مشابه
Activation of the maternal immune system alters cerebellar development in the offspring.
A common pathological finding in autism is a localized deficit in Purkinje cells (PCs). Cerebellar abnormalities have also been reported in schizophrenia. Using a mouse model that exploits a known risk factor for these disorders, maternal infection, we asked if the offspring of pregnant mice given a mid-gestation respiratory infection have cerebellar pathology resembling that seen in these diso...
متن کاملInduction of Maternal Immune Activation in Mice at Mid-gestation Stage with Viral Mimic Poly(I:C).
Maternal immune activation (MIA) model is increasingly well appreciated as a rodent model for the environmental risk factor of various psychiatric disorders. Numerous studies have demonstrated that MIA model is able to show face, construct, and predictive validity that are relevant to autism and schizophrenia. To model MIA, investigators often use viral mimic polyinosinic:polycytidylic acid (po...
متن کاملGestational Exposure to a Viral Mimetic Poly(I:C) Results in Long-Lasting Changes in Mitochondrial Function by Leucocytes in the Adult Offspring
Maternal immune activation (MIA) is a potential risk factor for autism spectrum disorder (ASD) and schizophrenia (SZ). In rodents, MIA results in changes in cytokine profiles and abnormal behaviors in the offspring that model these neuropsychiatric conditions. Given the central role that mitochondria have in immunity and other metabolic pathways, we hypothesized that MIA will result in a fetal ...
متن کاملIncreased affective ultrasonic communication during fear learning in adult male rats exposed to maternal immune activation.
Maternal exposure to infection during pregnancy greatly increases the risk of psychopathology in the offspring. In support of clinical findings, rodent models of maternal immune activation (MIA) show that prenatal exposure to pathogens can induce phenotypic changes in the offspring associated with schizophrenia, autism, depression and anxiety. In the current study, we investigated the effects o...
متن کاملImpact of maternal immune activation on maternal care behavior, offspring emotionality and intergenerational transmission in C3H/He mice
Maternal immune activation (MIA) is a well-established model for the investigation of the deleterious effects of gestational infection on offspring mental health later in life. Hence, MIA represents a critical environmental variable determining brain development and the depending neural and behavioral functions in the progeny. Transgenerational transmission of some of the effects of MIA has bee...
متن کامل